Linear Contrast Enhancement Network for Low-Illumination Image Enhancement

Images captured under low-illumination conditions usually suffer from severe degradations, such as fading and low contrast, drastically affecting the performance of systems relying on images under low-illumination conditions. To address such problems, this study proposes a linear contrast enhancemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-16
Hauptverfasser: Zhou, Zhaorun, Shi, Zhenghao, Ren, Wenqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Images captured under low-illumination conditions usually suffer from severe degradations, such as fading and low contrast, drastically affecting the performance of systems relying on images under low-illumination conditions. To address such problems, this study proposes a linear contrast enhancement network (LCENet) for low-illumination image enhancement. It consists of three subnets: two encoder-decoder-based subnets for gradient map restoration and brightness enhancement, respectively, and a backbone network for adaptive brightness and contrast adjustment. In addition, a linear contrast enhancement adaptive instance normalization (LCEAIN) module with linear contrast enhancement ability is proposed in the backbone network, which can avoid the problem of ignoring contrast enhancement when enhancing image brightness. Considerable evaluations on both synthetic and real low-illumination images show that the proposed method performs favorably against other existing similar methods. Moreover, our method can handle complex low-illuminance conditions and has good generalization for low-illuminance scenes with backlighting, night scenes with light sources, as well as underwater scenes with low illuminance. Code: https://github.com/zhouzhaorun/LCENet .
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2022.3232641