A conditional bound on sphere tangencies in all dimensions

We use polynomial method techniques to bound the number of tangent pairs in a collection of \(N\) spheres in \(\mathbb{R}^n\) subject to a non-degeneracy condition, for any \(n \geq 3\). The condition, inspired by work of Zahl for \(n=3\), asserts that on any sphere of the collection one cannot have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Crowley, Conrad, Vitturi, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use polynomial method techniques to bound the number of tangent pairs in a collection of \(N\) spheres in \(\mathbb{R}^n\) subject to a non-degeneracy condition, for any \(n \geq 3\). The condition, inspired by work of Zahl for \(n=3\), asserts that on any sphere of the collection one cannot have more than \(B\) points of tangency concentrated on any low-degree subvariety of the sphere. For collections that satisfy this condition, we show that the number of tangent pairs is \(O_{\epsilon}(B^{1/n - \epsilon} N^{2 - 1/n + \epsilon})\).
ISSN:2331-8422