A conditional bound on sphere tangencies in all dimensions
We use polynomial method techniques to bound the number of tangent pairs in a collection of \(N\) spheres in \(\mathbb{R}^n\) subject to a non-degeneracy condition, for any \(n \geq 3\). The condition, inspired by work of Zahl for \(n=3\), asserts that on any sphere of the collection one cannot have...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use polynomial method techniques to bound the number of tangent pairs in a collection of \(N\) spheres in \(\mathbb{R}^n\) subject to a non-degeneracy condition, for any \(n \geq 3\). The condition, inspired by work of Zahl for \(n=3\), asserts that on any sphere of the collection one cannot have more than \(B\) points of tangency concentrated on any low-degree subvariety of the sphere. For collections that satisfy this condition, we show that the number of tangent pairs is \(O_{\epsilon}(B^{1/n - \epsilon} N^{2 - 1/n + \epsilon})\). |
---|---|
ISSN: | 2331-8422 |