New fast Walsh–Hadamard–Hartley transform algorithm

This paper presents an efficient fast Walsh–Hadamard–Hartley transform (FWHT) algorithm that incorporates the computation of the Walsh-Hadamard transform (WHT) with the discrete Hartley transform (DHT) into an orthogonal, unitary single fast transform possesses the block diagonal structure. The prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2023-04, Vol.13 (2), p.1533
Hauptverfasser: Mardan, Suha Suliman, Hamood, Mounir Taha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an efficient fast Walsh–Hadamard–Hartley transform (FWHT) algorithm that incorporates the computation of the Walsh-Hadamard transform (WHT) with the discrete Hartley transform (DHT) into an orthogonal, unitary single fast transform possesses the block diagonal structure. The proposed algorithm is implemented in an integrated butterfly structure utilizing the sparse matrices factorization approach and the Kronecker (tensor) product technique, which proved a valuable and fast tool for developing and analyzing the proposed algorithm. The proposed approach was distinguished by ease of implementation and reduced computational complexity compared to previous algorithms, which were based on the concatenation of WHT and FHT by saving up to 3N-4 of real multiplication and 7.5N-10 of real addition.
ISSN:2088-8708
2722-2578
2088-8708
DOI:10.11591/ijece.v13i2.pp1533-1540