Near‐Infrared Mechanoluminescence of Cr3+ Doped Gallate Spinel and Magnetoplumbite Smart Materials
Mechanoluminescence (ML), as an optical response to deformation stimuli, shows great potential in high‐end stress sensing, ultrasonic field visualization, and multidimensional anti‐counterfeiting. However, processive practical applications in bio‐medicine are constrained by the discovery of near‐inf...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2023-01, Vol.33 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanoluminescence (ML), as an optical response to deformation stimuli, shows great potential in high‐end stress sensing, ultrasonic field visualization, and multidimensional anti‐counterfeiting. However, processive practical applications in bio‐medicine are constrained by the discovery of near‐infrared (NIR) ML materials. Unlike lanthanides (Ln3+) with sharp multiplets, two kinds of Cr3+‐doped NIR ML materials, gallate spinel (ZnGa2O4:Cr3+, Zn3Ga2GeO8:Cr3+) and gallate magnetoplumbite (SrGa12O19:Cr3+) are here reported. Owing to the intrinsic cation antisite defects and cation vacancies in the matrix, these materials exhibit bright NIR ML under a relatively low load (20 N). In particular for SrGa12O19:Cr3+ (750 nm, peak; 100 nm, FWHM) with low persistent luminescence (PersL) interference, the ML behavior can be further rejuvenated under UV and sunlight irradiation. SrGa12O19:Cr3+ also shows bright NIR emission under photo‐ and thermo‐stimulation. Owing to their excellent tissue penetration and concealment capability, NIR ML materials show great potential in the fields of bio‐medicine and anti‐counterfeiting.
Near‐infrared (NIR) mechanoluminescence (ML) in Cr3+ doped gallate spinel (ZnGa2O4:Cr3+, Zn3Ga2GeO8:Cr3+) and gallate magnetoplumbite (SrGa12O19:Cr3+) is developed. With excellent environmental resistance, SrGa12O19:Cr3+ shows a broadband NIR light‐emitting under mechano‐/thermal‐/photo‐ stimulation and has great potential in the field of bio‐medicine and multidimensional anti‐counterfeiting. This study provides more insights into broadband NIR ML based on Cr3+‐doped inorganic materials. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202209275 |