Dynamical classic limit: Dissipative vs conservative systems
We analyze the nonlinear dynamics of a quartic semiclassical system able to describe the interaction of matter with a field. We do it in both dissipative and conservative scenarios. In particular, we study the classical limit of both frameworks and compare the associated features. In the two environ...
Gespeichert in:
Veröffentlicht in: | Chaos (Woodbury, N.Y.) N.Y.), 2023-01, Vol.33 (1), p.013126-013126 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze the nonlinear dynamics of a quartic semiclassical system able to describe the interaction of matter with a field. We do it in both dissipative and conservative scenarios. In particular, we study the classical limit of both frameworks and compare the associated features. In the two environments, we heavily use a system’s invariant, related to the Uncertainty Principle, that helps to determine how the dynamics tends to the pertinent classical limit. We exhibit the convergence to the classical limit and also verify that the Uncertainty Principle is complied with during the entire process, even in the presence of dissipation. |
---|---|
ISSN: | 1054-1500 1089-7682 |
DOI: | 10.1063/5.0126040 |