Preliminary investigation of the UV LED photodegradation of methylene blue using TiO2–carbonized medium-density fiberboard
This preliminary study aimed to realize the potential use of titanium dioxide–carbonized medium-density fiberboard (TiO2–cMDF) as a biomaterial for dye wastewater treatment. TiO2–cMDF, which was prepared by carbonizing MDF treated with titanium tetraisopropoxide in isopropyl alcohol, was investigate...
Gespeichert in:
Veröffentlicht in: | Bioresources 2022-08, Vol.17 (3), p.4595-4606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This preliminary study aimed to realize the potential use of titanium dioxide–carbonized medium-density fiberboard (TiO2–cMDF) as a biomaterial for dye wastewater treatment. TiO2–cMDF, which was prepared by carbonizing MDF treated with titanium tetraisopropoxide in isopropyl alcohol, was investigated for adsorption and then photodegradation of methylene blue (MB) under UV-A (390 nm, 19 W) and UV-C (280 nm, 12 W) light emitting diodes (LEDs). After two full cycles of adsorption, four successive cycles of photodegradation were conducted under UV-A LED. For every adsorption or photodegradation cycle, TiO2–cMDF practically removed MB. Both adsorption and photodegradation followed pseudo-first-order kinetics. The rate constants for adsorption decreased by half. The rate constants for photodegradation were similar. This finding suggests that UV-A LED is a robust and steady source of UV light. Photodegradation under UV-C LED was also performed. However, due to its high-energy output, the UV-C LED module overheated even though a cooling fan was present. Although the results indicate a slow photodegradation under UV LEDs, because of the limited number of specimens, increasing the number of specimens and UV LED modules will improve its performance. |
---|---|
ISSN: | 1930-2126 1930-2126 |
DOI: | 10.15376/biores.17.3.4595-4606 |