Instrumental variable‐based multi‐innovation gradient estimation for nonlinear systems with scarce measurements

Summary This article considers the identification problems of nonlinear systems with scarce measurements by using the instrumental variable technique. When the product of the instrumental matrix and the information matrix is a nonsingular matrix and the weak persistent excitation condition about the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2023-01, Vol.44 (1), p.243-258
Hauptverfasser: Xia, Huafeng, Xu, Sheng, Miao, Xinghua, Cao, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This article considers the identification problems of nonlinear systems with scarce measurements by using the instrumental variable technique. When the product of the instrumental matrix and the information matrix is a nonsingular matrix and the weak persistent excitation condition about the instrumental vector is true, the obtained parameter estimates can be unbiased consistent estimates. The key is how to choose the instrumental variables. Difficulty arises in that the system outputs are unavailable. By applying the negative gradient search, a recursive instrumental variable‐based gradient algorithm is derived to estimate the parameters of the nonlinear systems with missing observed data. Moreover, the multi‐innovation identification theory is introduced to further improve the parameter estimation accuracy. The simulation results illustrate that the proposed methods are effective.
ISSN:0143-2087
1099-1514
DOI:10.1002/oca.2941