Instrumental variable‐based multi‐innovation gradient estimation for nonlinear systems with scarce measurements
Summary This article considers the identification problems of nonlinear systems with scarce measurements by using the instrumental variable technique. When the product of the instrumental matrix and the information matrix is a nonsingular matrix and the weak persistent excitation condition about the...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2023-01, Vol.44 (1), p.243-258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
This article considers the identification problems of nonlinear systems with scarce measurements by using the instrumental variable technique. When the product of the instrumental matrix and the information matrix is a nonsingular matrix and the weak persistent excitation condition about the instrumental vector is true, the obtained parameter estimates can be unbiased consistent estimates. The key is how to choose the instrumental variables. Difficulty arises in that the system outputs are unavailable. By applying the negative gradient search, a recursive instrumental variable‐based gradient algorithm is derived to estimate the parameters of the nonlinear systems with missing observed data. Moreover, the multi‐innovation identification theory is introduced to further improve the parameter estimation accuracy. The simulation results illustrate that the proposed methods are effective. |
---|---|
ISSN: | 0143-2087 1099-1514 |
DOI: | 10.1002/oca.2941 |