Hole-growth phenomenon during pyrolysis of a cation-exchange resin particle
A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 °C. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then...
Gespeichert in:
Veröffentlicht in: | Journal of Zhejiang University. A. Science 2022, Vol.23 (12), p.974-987 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel central hole-expansion phenomenon is identified, in which the cation-exchange resin is pyrolyzed in a mixed atmosphere of nitrogen and oxygen at 400–500 °C. In this reaction, the reaction path is predictable and always starts from the center of the resin particle to form a central hole, then continues and expands around the hole, finally forming a uniformly distributed hole group; the particle surface remains intact. Analysis shows that this formation mode is due to the different reaction paths of sulfonic groups between the surface and interior of the particle, caused by the temperature difference. On the surface, transformation reactions happen at high temperatures (410–500 °C) to form stable organic sulfur structures, while decomposition occurs inside the particle at a relatively low temperature ( |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A2200233 |