RNA Oligomerisation without Added Catalyst from 2′,3′‐Cyclic Nucleotides by Drying at Air‐Water Interfaces
For the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air‐water interfaces, 2′,3′‐cyclic nucleotides oligomerised without additional catalyst, forming up to 10‐mers within a day. The oligomerisa...
Gespeichert in:
Veröffentlicht in: | ChemSystemsChem 2023-01, Vol.5 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the emergence of life, the abiotic synthesis of RNA from its monomers is a central step. We found that in alkaline, drying conditions in bulk and at heated air‐water interfaces, 2′,3′‐cyclic nucleotides oligomerised without additional catalyst, forming up to 10‐mers within a day. The oligomerisation proceeded at a pH range of 7–12, at temperatures between 40–80 °C and was marginally enhanced by K+ ions. Among the canonical ribonucleotides, cGMP oligomerised most efficiently. Quantification was performed using HPLC coupled to ESI‐TOF by fitting the isotope distribution to the mass spectra. Our study suggests a oligomerisation mechanism where cGMP aids the incorporation of the relatively unreactive nucleotides C, A and U. The 2′,3′‐cyclic ribonucleotides are byproducts of prebiotic phosphorylation, nucleotide syntheses and RNA hydrolysis, indicating direct recycling pathways. The simple reaction condition offers a plausible entry point for RNA to the evolution of life on early Earth.
Without catalyst! A non‐enzymatic, spontaneous route to the formation of short, mixed‐sequence RNA strands from 2′,3′‐cyclic ribonucleotides is shown. The reaction occurs by drying at the air–water interfaces. |
---|---|
ISSN: | 2570-4206 2570-4206 |
DOI: | 10.1002/syst.202200026 |