Improving the estimation of soil water evaporation based on days after wetting
Soil evaporation constitutes a major pathway of water loss in agriculture. Understanding its dynamics in the face of drying and soil cover is fundamental to improve both simulation models and the sustainability of production systems. Thus, the objective of this study was to estimate soil evaporation...
Gespeichert in:
Veröffentlicht in: | Journal of agronomy and crop science (1986) 2023-02, Vol.209 (1), p.176-187 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil evaporation constitutes a major pathway of water loss in agriculture. Understanding its dynamics in the face of drying and soil cover is fundamental to improve both simulation models and the sustainability of production systems. Thus, the objective of this study was to estimate soil evaporation as a function of drying and percentage of soil cover. Three experiments were carried out in three different periods. In each of the periods, in parallel and in an adjacent area, an experiment was carried out to evaluate the influence of weighing micro‐lysimeter (ML) height on the estimation of direct soil evaporation. The experiments were installed with a completely randomized design. For the experiments that measured evaporation as a function of cover, the treatments consisted of six different percentages of cover of the internal area of the ML (0%, 10%, 25%, 50%, 75% and 100%), with four replicates, using artificial plants to cover the soil. The experiments that estimated evaporation as a function of ML height were conducted with eight repetitions and three different ML heights (100, 200 and 300 mm). It was observed that the accumulated evaporation up to 25 days after wetting was 52% and 53% lower in micro‐lysimeters with 100 mm height, compared to those with 200 and 300 mm height, respectively, for all experiments. The new model developed to calculate soil evaporation as a function of the days after wetting and percentage of soil cover showed excellent performance (NSE > 0.95). |
---|---|
ISSN: | 0931-2250 1439-037X |
DOI: | 10.1111/jac.12614 |