Genome size and gas chromatography-mass spectrometry (GC–MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants

Pluchea lanceolata is a threatened pharmacologically important plant from the family Asteraceae. It is a source of immunologically active compounds; large-scale propagation may offer compounds with medicinal benefits. Traditional propagation method is ineffective as the seeds are not viable; and roo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied genetics 2023-02, Vol.64 (1), p.1-21
Hauptverfasser: Mamgain, Jyoti, Mujib, A., Syeed, Rukaya, Ejaz, Bushra, Malik, Moien Qadir, Bansal, Yashika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pluchea lanceolata is a threatened pharmacologically important plant from the family Asteraceae. It is a source of immunologically active compounds; large-scale propagation may offer compounds with medicinal benefits. Traditional propagation method is ineffective as the seeds are not viable; and root sprout propagation is a slow process and produces less numbers of plants. Plant tissue culture technique is an alternative, efficient method for increasing mass propagation and it also facilitate genetic improvement. The present study investigated a three-way regeneration system in P. lanceolata using indirect shoot regeneration (ISR), direct shoot regeneration (DSR), and somatic embryo mediated regeneration (SER). Aseptic leaf and nodal explants were inoculated on Murashige and Skoog (MS) medium amended with plant growth regulators (PGRs), 2,4-dichlorophenoxy acetic acid (2,4-D), 1-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP) either singly or in combinations. Compact, yellowish green callus was obtained from leaf explants in 1.0 mg/l BAP (89.10%) added medium; ISR percentage was high, i.e., 69.33% in 2.0 mg/l BAP + 0.5 mg/l NAA enriched MS with 4.02 mean number of shoots per callus mass. Highest DSR frequency (67.15%) with an average of 5.62 shoot numbers per explant was noted in 0.5 mg/l BAP added MS medium. Somatic embryos were produced in 1.0 mg/l NAA fortified medium with 4.1 mean numbers of somatic embryos per culture. On BAP (1.0 mg/l) + 0.5 mg/l gibberellic acid (GA 3 ) amended medium, improved somatic embryo germination frequency (68.14%) was noted showing 12.18 mean numbers of shoots per culture. Histological and scanning electron microscopic (SEM) observation revealed different stages of embryos, confirming somatic embryogenesis in P. lanceolata. Best rooting frequency (83.95%) of in vitro raised shootlets was obtained in 1.0 mg/l IBA supplemented half MS medium with a maximum of 7.83 roots per shoot. The regenerated plantlets were transferred to the field with 87% survival rate. The 2C genome size of ISR, DSR, and SER plants was measured and noted to be 2.24, 2.25, and 2.22 pg respectively, which are similar to field-grown mother plant (2C = 2.26 pg). Oxidative and physiological events suggested upregulation of enzymatic activities in tissue culture regenerated plants compared to mother plants, so were photosynthetic pigments. Implementation of gas chromatography-mass spectrometry (GC–MS) technique on in vivo and in vitro raised p
ISSN:1234-1983
2190-3883
DOI:10.1007/s13353-022-00727-7