On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes

In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cryptography and communications 2023, Vol.15 (1), p.171-198
Hauptverfasser: Dinh, Hai Q., Bag, Tushar, Abdukhalikov, Kanat, Pathak, Sachin, Upadhyay, Ashish K., Bandi, Ramakrishna, Chinnakum, Warattaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 1
container_start_page 171
container_title Cryptography and communications
container_volume 15
creator Dinh, Hai Q.
Bag, Tushar
Abdukhalikov, Kanat
Pathak, Sachin
Upadhyay, Ashish K.
Bandi, Ramakrishna
Chinnakum, Warattaya
description In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q . Extending θ to Θ over R , we study skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R , where λ and Γ are units in F q and R , respectively. We also show that, the dual of a skew ( θ ,Θ)-( λ ,Γ)-constacyclic code over F q R is a skew ( θ ,Θ)-( λ − 1 ,Γ − 1 )-constacyclic code over F q R . We classify some self-dual skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes using the possible values of units of R . Also using suitable values of λ , θ ,Γ and Θ, we present the structure of other linear codes over F q R . We construct a Gray map over F q R and study the Gray images of skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R . As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew θ -cyclic codes than from cyclic codes over F q .
doi_str_mv 10.1007/s12095-022-00594-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2764473220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2764473220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-c4c15faf246157781e4a5cafb721c60d7cd25e6e55deaedbd9217c231a3a9b053</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EEqXwA6wssTZ4jMkSVUxSpW5gbb04TklJndR2GP4e0yDYsbKffM991kHonNFLRqm-iozTUhHKOaFUlZKIAzRjpSgIl0od_t6lPkYnMW4oLRSXYobGlceAbQcx4r7B8dW9Y9v7mMB-2q61eahdfnpzAW_bD1dj6IYXqFyKGHyehiGnILWZwa2f2DDa1Po17ofUbqHbB3cj-DRup75TdNRAF93ZzzlHz3e3T4sHslzdPy5ulsRyWSZipWWqgYbLgimtr5mToCw0lebMFrTWtubKFU6p2oGrq7rkTFsuGAgoK6rEHF1MvUPod6OLyWz6Mfi80nBdZBuCc5pTfErZ0McYXGOGkP8dPg2j5luvmfSarNfs9RqRITFBMYf92oW_6n-oL06-f6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2764473220</pqid></control><display><type>article</type><title>On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes</title><source>SpringerLink</source><creator>Dinh, Hai Q. ; Bag, Tushar ; Abdukhalikov, Kanat ; Pathak, Sachin ; Upadhyay, Ashish K. ; Bandi, Ramakrishna ; Chinnakum, Warattaya</creator><creatorcontrib>Dinh, Hai Q. ; Bag, Tushar ; Abdukhalikov, Kanat ; Pathak, Sachin ; Upadhyay, Ashish K. ; Bandi, Ramakrishna ; Chinnakum, Warattaya</creatorcontrib><description>In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q . Extending θ to Θ over R , we study skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R , where λ and Γ are units in F q and R , respectively. We also show that, the dual of a skew ( θ ,Θ)-( λ ,Γ)-constacyclic code over F q R is a skew ( θ ,Θ)-( λ − 1 ,Γ − 1 )-constacyclic code over F q R . We classify some self-dual skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes using the possible values of units of R . Also using suitable values of λ , θ ,Γ and Θ, we present the structure of other linear codes over F q R . We construct a Gray map over F q R and study the Gray images of skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R . As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew θ -cyclic codes than from cyclic codes over F q .</description><identifier>ISSN: 1936-2447</identifier><identifier>EISSN: 1936-2455</identifier><identifier>DOI: 10.1007/s12095-022-00594-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automorphisms ; Binary system ; Circuits ; Codes ; Coding and Information Theory ; Communications Engineering ; Computer Science ; Data Structures and Information Theory ; Error correcting codes ; Error correction ; Information and Communication ; Linear codes ; Mathematics of Computing ; Networks</subject><ispartof>Cryptography and communications, 2023, Vol.15 (1), p.171-198</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-c4c15faf246157781e4a5cafb721c60d7cd25e6e55deaedbd9217c231a3a9b053</citedby><cites>FETCH-LOGICAL-c249t-c4c15faf246157781e4a5cafb721c60d7cd25e6e55deaedbd9217c231a3a9b053</cites><orcidid>0000-0002-7613-8351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12095-022-00594-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12095-022-00594-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Bag, Tushar</creatorcontrib><creatorcontrib>Abdukhalikov, Kanat</creatorcontrib><creatorcontrib>Pathak, Sachin</creatorcontrib><creatorcontrib>Upadhyay, Ashish K.</creatorcontrib><creatorcontrib>Bandi, Ramakrishna</creatorcontrib><creatorcontrib>Chinnakum, Warattaya</creatorcontrib><title>On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes</title><title>Cryptography and communications</title><addtitle>Cryptogr. Commun</addtitle><description>In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q . Extending θ to Θ over R , we study skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R , where λ and Γ are units in F q and R , respectively. We also show that, the dual of a skew ( θ ,Θ)-( λ ,Γ)-constacyclic code over F q R is a skew ( θ ,Θ)-( λ − 1 ,Γ − 1 )-constacyclic code over F q R . We classify some self-dual skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes using the possible values of units of R . Also using suitable values of λ , θ ,Γ and Θ, we present the structure of other linear codes over F q R . We construct a Gray map over F q R and study the Gray images of skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R . As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew θ -cyclic codes than from cyclic codes over F q .</description><subject>Automorphisms</subject><subject>Binary system</subject><subject>Circuits</subject><subject>Codes</subject><subject>Coding and Information Theory</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Information and Communication</subject><subject>Linear codes</subject><subject>Mathematics of Computing</subject><subject>Networks</subject><issn>1936-2447</issn><issn>1936-2455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EEqXwA6wssTZ4jMkSVUxSpW5gbb04TklJndR2GP4e0yDYsbKffM991kHonNFLRqm-iozTUhHKOaFUlZKIAzRjpSgIl0od_t6lPkYnMW4oLRSXYobGlceAbQcx4r7B8dW9Y9v7mMB-2q61eahdfnpzAW_bD1dj6IYXqFyKGHyehiGnILWZwa2f2DDa1Po17ofUbqHbB3cj-DRup75TdNRAF93ZzzlHz3e3T4sHslzdPy5ulsRyWSZipWWqgYbLgimtr5mToCw0lebMFrTWtubKFU6p2oGrq7rkTFsuGAgoK6rEHF1MvUPod6OLyWz6Mfi80nBdZBuCc5pTfErZ0McYXGOGkP8dPg2j5luvmfSarNfs9RqRITFBMYf92oW_6n-oL06-f6o</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Dinh, Hai Q.</creator><creator>Bag, Tushar</creator><creator>Abdukhalikov, Kanat</creator><creator>Pathak, Sachin</creator><creator>Upadhyay, Ashish K.</creator><creator>Bandi, Ramakrishna</creator><creator>Chinnakum, Warattaya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7613-8351</orcidid></search><sort><creationdate>2023</creationdate><title>On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes</title><author>Dinh, Hai Q. ; Bag, Tushar ; Abdukhalikov, Kanat ; Pathak, Sachin ; Upadhyay, Ashish K. ; Bandi, Ramakrishna ; Chinnakum, Warattaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-c4c15faf246157781e4a5cafb721c60d7cd25e6e55deaedbd9217c231a3a9b053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automorphisms</topic><topic>Binary system</topic><topic>Circuits</topic><topic>Codes</topic><topic>Coding and Information Theory</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Information and Communication</topic><topic>Linear codes</topic><topic>Mathematics of Computing</topic><topic>Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Hai Q.</creatorcontrib><creatorcontrib>Bag, Tushar</creatorcontrib><creatorcontrib>Abdukhalikov, Kanat</creatorcontrib><creatorcontrib>Pathak, Sachin</creatorcontrib><creatorcontrib>Upadhyay, Ashish K.</creatorcontrib><creatorcontrib>Bandi, Ramakrishna</creatorcontrib><creatorcontrib>Chinnakum, Warattaya</creatorcontrib><collection>CrossRef</collection><jtitle>Cryptography and communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Hai Q.</au><au>Bag, Tushar</au><au>Abdukhalikov, Kanat</au><au>Pathak, Sachin</au><au>Upadhyay, Ashish K.</au><au>Bandi, Ramakrishna</au><au>Chinnakum, Warattaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes</atitle><jtitle>Cryptography and communications</jtitle><stitle>Cryptogr. Commun</stitle><date>2023</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>171</spage><epage>198</epage><pages>171-198</pages><issn>1936-2447</issn><eissn>1936-2455</eissn><abstract>In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q . Extending θ to Θ over R , we study skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R , where λ and Γ are units in F q and R , respectively. We also show that, the dual of a skew ( θ ,Θ)-( λ ,Γ)-constacyclic code over F q R is a skew ( θ ,Θ)-( λ − 1 ,Γ − 1 )-constacyclic code over F q R . We classify some self-dual skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes using the possible values of units of R . Also using suitable values of λ , θ ,Γ and Θ, we present the structure of other linear codes over F q R . We construct a Gray map over F q R and study the Gray images of skew ( θ ,Θ)-( λ ,Γ)-constacyclic codes over F q R . As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew θ -cyclic codes than from cyclic codes over F q .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12095-022-00594-3</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-7613-8351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-2447
ispartof Cryptography and communications, 2023, Vol.15 (1), p.171-198
issn 1936-2447
1936-2455
language eng
recordid cdi_proquest_journals_2764473220
source SpringerLink
subjects Automorphisms
Binary system
Circuits
Codes
Coding and Information Theory
Communications Engineering
Computer Science
Data Structures and Information Theory
Error correcting codes
Error correction
Information and Communication
Linear codes
Mathematics of Computing
Networks
title On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20skew%20constacyclic%20codes%20over%20mixed%20alphabets%20and%20applications%20in%20constructing%20optimal%20and%20quantum%20codes&rft.jtitle=Cryptography%20and%20communications&rft.au=Dinh,%20Hai%20Q.&rft.date=2023&rft.volume=15&rft.issue=1&rft.spage=171&rft.epage=198&rft.pages=171-198&rft.issn=1936-2447&rft.eissn=1936-2455&rft_id=info:doi/10.1007/s12095-022-00594-3&rft_dat=%3Cproquest_cross%3E2764473220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2764473220&rft_id=info:pmid/&rfr_iscdi=true