On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes
In this paper, we first discuss linear codes over R and present the decomposition structure of linear codes over the mixed alphabet F q R , where R = F q + u F q + v F q + u v F q , with u 2 = 1, v 2 = 1, u v = v u and q = p m for odd prime p , positive integer m . Let θ be an automorphism on F q ....
Gespeichert in:
Veröffentlicht in: | Cryptography and communications 2023, Vol.15 (1), p.171-198 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we first discuss linear codes over
R
and present the decomposition structure of linear codes over the mixed alphabet
F
q
R
, where
R
=
F
q
+
u
F
q
+
v
F
q
+
u
v
F
q
, with
u
2
= 1,
v
2
= 1,
u
v
=
v
u
and
q
=
p
m
for odd prime
p
, positive integer
m
. Let
θ
be an automorphism on
F
q
. Extending
θ
to Θ over
R
, we study skew (
θ
,Θ)-(
λ
,Γ)-constacyclic codes over
F
q
R
, where
λ
and Γ are units in
F
q
and
R
, respectively. We also show that, the dual of a skew (
θ
,Θ)-(
λ
,Γ)-constacyclic code over
F
q
R
is a skew (
θ
,Θ)-(
λ
− 1
,Γ
− 1
)-constacyclic code over
F
q
R
. We classify some self-dual skew (
θ
,Θ)-(
λ
,Γ)-constacyclic codes using the possible values of units of
R
. Also using suitable values of
λ
,
θ
,Γ and Θ, we present the structure of other linear codes over
F
q
R
. We construct a Gray map over
F
q
R
and study the Gray images of skew (
θ
,Θ)-(
λ
,Γ)-constacyclic codes over
F
q
R
. As applications of our study, we construct many good codes, among them, there are 17 optimal codes and 2 near-optimal codes. Finally, we discuss the advantages in a construction of quantum error-correcting codes (QECCs) from skew
θ
-cyclic codes than from cyclic codes over
F
q
. |
---|---|
ISSN: | 1936-2447 1936-2455 |
DOI: | 10.1007/s12095-022-00594-3 |