TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS
We establish some equivalent conditions for a homeomorphism φ : D → D ′ of Euclidean domains in R n , n ≥ 2 , to induce a bounded composition operator φ ∗ : L p 1 ( D ′ ; ω ) ∩ Lip l ( D ′ ) → L q 1 ( D ; θ ) , where 1 < q ≤ p < ∞ , by the composition rule: φ ∗ ( f ) = f ∘ φ . Here ω : D ′ → (...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-09, Vol.266 (3), p.491-509 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish some equivalent conditions for a homeomorphism
φ
:
D
→
D
′
of Euclidean domains in
R
n
,
n
≥
2
, to induce a bounded composition operator
φ
∗
:
L
p
1
(
D
′
;
ω
)
∩
Lip
l
(
D
′
)
→
L
q
1
(
D
;
θ
)
, where
1
<
q
≤
p
<
∞
, by the composition rule:
φ
∗
(
f
)
=
f
∘
φ
. Here
ω
:
D
′
→
(
0
,
∞
)
is an arbitrary weight function on the domain
D
′
, and
θ
:
D
→
(
0
,
∞
)
is some weight function in Muckenhoupt’s
A
q
-class on the domain
D
. Moreover, we prove that the class of homeomorphisms under consideration is completely determined by the controlled variation of the weighted capacity of cubical condensers whose shells are concentric cubes. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-05903-y |