On the Controllability of Entropy Solutions of Scalar Conservation Laws at a Junction via Lyapunov Methods

In this note, we prove a controllability result for entropy solutions of scalar conservation laws on a star-shaped graph. Using a Lyapunov-type approach, we show that, under a monotonicity assumption on the flux, if u and v are two entropy solutions corresponding to different initial data and same i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vietnam journal of mathematics 2023, Vol.51 (1), p.71-88
Hauptverfasser: De Nitti, Nicola, Zuazua, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we prove a controllability result for entropy solutions of scalar conservation laws on a star-shaped graph. Using a Lyapunov-type approach, we show that, under a monotonicity assumption on the flux, if u and v are two entropy solutions corresponding to different initial data and same in-flux boundary data (at the exterior nodes of the star-shaped graph), then u ≡ v for a sufficiently large time. In order words, we can drive u to the target profile v in a sufficiently large control time by inputting the trace of v at the exterior nodes as in-flux boundary data for u . This result can also be shown to hold on tree-shaped networks by an inductive argument. We illustrate the result with some numerical simulations.
ISSN:2305-221X
2305-2228
DOI:10.1007/s10013-022-00598-9