Improved graph‐based multitask learning model with sparse sharing for quantitative structure–property relationship prediction of drug molecules

The quantitative structure–property relationship (QSPR) is a fundamental technique for evaluating and screening potentially valuable molecules in the field of drug discovery. There is an urgent need to speed up pharmaceutical research and development and a huge chemical space to explore, which neces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2023-02, Vol.69 (2), p.n/a
Hauptverfasser: Hu, Haoyang, Bai, Yunke, Yuan, Zhihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantitative structure–property relationship (QSPR) is a fundamental technique for evaluating and screening potentially valuable molecules in the field of drug discovery. There is an urgent need to speed up pharmaceutical research and development and a huge chemical space to explore, which necessitate effective and precise computer‐aided QSPR modeling methods. Previous studies with various deep learning models are limited because they are trained on separate small datasets, known as the small‐sample problem. Using transfer learning, this article describes a sparse sharing method that uses advanced graph‐based models to construct an efficient and reasonable multitask learning workflow for QSPR prediction. The proposed workflow is systematically and comprehensively tested with four benchmark datasets containing different targets, and several precisely predicted molecular examples are illustrated. The results demonstrate that an obvious improvement in the prediction of molecular properties is achieved, along with the ability to predict multiple properties simultaneously.
ISSN:0001-1541
1547-5905
DOI:10.1002/aic.17968