Polynomial equations modulo prime numbers
We consider polynomial equations, or systems of polynomial equations, with integer coefficients, modulo prime numbers \(p\). We offer an elementary approach based on a counting method. The outcome is a weak form of the Lang-Weil lower bound for the number of solutions modulo \(p\), only differing fr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider polynomial equations, or systems of polynomial equations, with integer coefficients, modulo prime numbers \(p\). We offer an elementary approach based on a counting method. The outcome is a weak form of the Lang-Weil lower bound for the number of solutions modulo \(p\), only differing from Lang-Weil by an asymptotic \(p^\epsilon\) multiplicative factor. Our second contribution is a reduction lemma to the case of a single equation which we use to extend our results to systems of equations. We show further how to use this reduction to prove the full Lang-Weil estimate for varieties, assuming it for hypersurfaces, in a version using a variant of the classical degree in the error term. |
---|---|
ISSN: | 2331-8422 |