Polynomial equations modulo prime numbers

We consider polynomial equations, or systems of polynomial equations, with integer coefficients, modulo prime numbers \(p\). We offer an elementary approach based on a counting method. The outcome is a weak form of the Lang-Weil lower bound for the number of solutions modulo \(p\), only differing fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Bodin, Arnaud, Dèbes, Pierre, Salah Najib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider polynomial equations, or systems of polynomial equations, with integer coefficients, modulo prime numbers \(p\). We offer an elementary approach based on a counting method. The outcome is a weak form of the Lang-Weil lower bound for the number of solutions modulo \(p\), only differing from Lang-Weil by an asymptotic \(p^\epsilon\) multiplicative factor. Our second contribution is a reduction lemma to the case of a single equation which we use to extend our results to systems of equations. We show further how to use this reduction to prove the full Lang-Weil estimate for varieties, assuming it for hypersurfaces, in a version using a variant of the classical degree in the error term.
ISSN:2331-8422