Using Machine Learning Approaches for Food Quality Detection

Food quality detection is an important method for ensuring food safety. Efficient quality detection methods can improve the efficiency of food circulation and reduce storage and labor costs. Traditional methods use instrumentation, testing reagents, or manual labor. These methods take a long time to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-12, Vol.2022, p.1-9
Hauptverfasser: Han, Junming, Li, Tong, He, Yun, Gao, Quan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Food quality detection is an important method for ensuring food safety. Efficient quality detection methods can improve the efficiency of food circulation and reduce storage and labor costs. Traditional methods use instrumentation, testing reagents, or manual labor. These methods take a long time to detect, are time-consuming and labor-intensive, and require professionals to operate. Fruit, as a high-value food that provides essential nutrition for human beings, is susceptible to spoilage during packaging, transportation, and sales, so the freshness and safety assurance of fruit are a hot and difficult area of current research. Therefore, for the detection of fruit freshness, this paper proposes an efficient and nondestructive way to detect fruit freshness by using the machine learning algorithm convolutional neural network (CNN). This paper shows that convolutional neural networks have good performance in identifying the freshness of fruits through extensive experimental results and discusses the overfitting of machine learning based on the experimental results.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/6852022