SphereFace Revived: Unifying Hyperspherical Face Recognition

This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-02, Vol.45 (2), p.2458-2474
Hauptverfasser: Liu, Weiyang, Wen, Yandong, Raj, Bhiksha, Singh, Rita, Weller, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the deep face recognition problem under an open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably chosen metric space. To this end, hyperspherical face recognition, as a promising line of research, has attracted increasing attention and gradually become a major focus in face recognition research. As one of the earliest works in hyperspherical face recognition, SphereFace explicitly proposed to learn face embeddings with large inter-class angular margin. However, SphereFace still suffers from severe training instability which limits its application in practice. In order to address this problem, we introduce a unified framework to understand large angular margin in hyperspherical face recognition. Under this framework, we extend the study of SphereFace and propose an improved variant with substantially better training stability - SphereFace-R. Specifically, we propose two novel ways to implement the multiplicative margin, and study SphereFace-R under three different feature normalization schemes (no feature normalization, hard feature normalization and soft feature normalization). We also propose an implementation strategy - "characteristic gradient detachment" - to stabilize training. Extensive experiments on SphereFace-R show that it is consistently better than or competitive with state-of-the-art methods.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3159732