Robust Deep Reinforcement Learning Scheduling via Weight Anchoring

Questions remain on the robustness of data-driven learning methods when crossing the gap from simulation to reality. We utilize weight anchoring, a method known from continual learning, to cultivate and fixate desired behavior in Neural Networks. Weight anchoring may be used to find a solution to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2023-01, Vol.27 (1), p.1-1
Hauptverfasser: Gracla, Steffen, Beck, Edgar, Bockelmann, Carsten, Dekorsy, Armin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Questions remain on the robustness of data-driven learning methods when crossing the gap from simulation to reality. We utilize weight anchoring, a method known from continual learning, to cultivate and fixate desired behavior in Neural Networks. Weight anchoring may be used to find a solution to a learning problem that is nearby the solution of another learning problem. Thereby, learning can be carried out in optimal environments without neglecting or unlearning desired behavior. We demonstrate this approach on the example of learning mixed QoS-efficient discrete resource scheduling with infrequent priority messages. Results show that this method provides performance comparable to the state of the art of augmenting a simulation environment, alongside significantly increased robustness and steerability.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2022.3214574