ARES: Adaptive Resource-Aware Split Learning for Internet of Things

Distributed training of Machine Learning models in edge Internet of Things (IoT) environments is challenging because of three main points. First, resource-constrained devices have large training times and limited energy budget. Second, resource heterogeneity of IoT devices slows down the training of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-12, Vol.218, p.109380, Article 109380
Hauptverfasser: Samikwa, Eric, Maio, Antonio Di, Braun, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Distributed training of Machine Learning models in edge Internet of Things (IoT) environments is challenging because of three main points. First, resource-constrained devices have large training times and limited energy budget. Second, resource heterogeneity of IoT devices slows down the training of the global model due to the presence of slower devices (stragglers). Finally, varying operational conditions, such as network bandwidth, and computing resources, significantly affect training time and energy consumption. Recent studies have proposed Split Learning (SL) for distributed model training with limited resources but its efficient implementation on the resource-constrained and decentralized heterogeneous IoT devices remains minimally explored. We propose Adaptive REsource-aware Split-learning (ARES), a scheme for efficient model training in IoT systems. ARES accelerates training in resource-constrained devices and minimizes the effect of stragglers on the training through device-targeted split points while accounting for time-varying network throughput and computing resources. ARES takes into account application constraints to mitigate training optimization tradeoffs in terms of energy consumption and training time. We evaluate ARES prototype on a real testbed comprising heterogeneous IoT devices running a widely-adopted deep neural network and dataset. Results show that ARES accelerates model training on IoT devices by up to 48% and minimizes the energy consumption by up to 61.4% compared to Federated Learning (FL) and classic SL, without sacrificing model convergence and accuracy.
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2022.109380