Solvent‐Induced Anti‐Aggregation Evolution on Small Molecule Electron‐Transporting Layer for Efficient, Scalable, and Robust Organic Solar Cells

The severe aggregation property of the small molecule electron‐transporting layer (ETL) not only deteriorates the photovoltaic performance and operational reliability but also constrains its compatibility with large‐scale coating techniques. Herein, by applying N,N′‐Bis{3‐[3‐(Dimethylamino)propylami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2023-01, Vol.13 (1), p.n/a
Hauptverfasser: Song, Xin, Song, Yuanxia, Xu, Hao, Gao, Shenzheng, Wang, Yanfeng, Li, Junjie, Hai, Jiefeng, Liu, Wenzhu, Zhu, Weiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The severe aggregation property of the small molecule electron‐transporting layer (ETL) not only deteriorates the photovoltaic performance and operational reliability but also constrains its compatibility with large‐scale coating techniques. Herein, by applying N,N′‐Bis{3‐[3‐(Dimethylamino)propylamino]propyl}perylene‐3,4,9,10‐tetracarboxylic diimide (PDINN) (a well‐known ETL) as a demo, a solvent‐induced anti‐aggregation (SIAA) strategy is proposed to cope with these hurdles via the mixing of ethanol and trifluoroethanol solvents at an optimal volume ratio. In situ photoluminescence and dynamic light scattering synergistically reveals the suppressed aggregation behavior of the SIAA‐treated PDINN dispersion during the film‐forming process. Owing to this amendment, the film quality and electron‐transport capability of the PDINN layer are remarkably enhanced. In consequence, based on the PM6:L8‐BO system, a champion power conversion efficiency (PCE) of 19.0% together with an impressive fill factor of 80.6% is harvested. A 1 cm2 device with an excellent PCE of 16.6% is also fabricated using the doctor‐blading SIAA‐treated PDINN ink. More strikingly, this SIAA treatment impels better reliability under long‐term shelf‐lifetime and thermal stress periods. This work provides a promising and tractable approach to address the inherent self‐aggregation issue of electron‐transporting materials, which is beneficial for the development of efficient and stable organic optoelectronic devices. A solvent‐induced anti‐aggregation (SIAA) strategy is proposed to cope with the severe aggregation action of the small‐molecule electron‐transporting layer via the mixing of ethanol and trifluoroethanol solvents at an optimal volume ratio. A champion power conversion efficiency of 19.0% is yielded based on the PM6:L8‐BO system after the SIAA treatment.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202203009