A new fast technique for pattern matching in biological sequences
At numerous phases of the computational process, pattern matching is essential. It enables users to search for specific DNA subsequences or DNA sequences in a database. In addition, some of these rapidly expanding biological databases are updated on a regular basis. Pattern searches can be improved...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2023, Vol.79 (1), p.367-388 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At numerous phases of the computational process, pattern matching is essential. It enables users to search for specific DNA subsequences or DNA sequences in a database. In addition, some of these rapidly expanding biological databases are updated on a regular basis. Pattern searches can be improved by using high-speed pattern matching algorithms. Researchers are striving to improve solutions in numerous areas of computational bioinformatics as biological data grows exponentially. Faster algorithms with a low error rate are needed in real-world applications. As a result, this study offers two pattern matching algorithms that were created to help speed up DNA sequence pattern searches. The strategies recommended improve performance by utilizing word-level processing rather than character-level processing, which has been used in previous research studies. In terms of time cost, the proposed algorithms (EFLPM and EPAPM) increased performance by leveraging word-level processing with large pattern size. The experimental results show that the proposed methods are faster than other algorithms for short and long patterns. As a result, the EFLPM algorithm is 54% faster than the FLPM method, while the EPAPM algorithm is 39% faster than the PAPM method. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-022-04673-3 |