Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalination

Reverse osmosis (RO) is considered a lifesaver technology to conquer the current catastrophic water shortage situation. However, reaching a competitive RO membrane is a challenging issue. Therefore, this study investigated the optimum polymeric blending ratio between cellulose acetate (CA) and polyv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellulose (London) 2023, Vol.30 (1), p.413-426
Hauptverfasser: Koriem, Omneya A., Showman, Marwa S., El-Shazly, Ahmed H., Elkady, Marwa F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reverse osmosis (RO) is considered a lifesaver technology to conquer the current catastrophic water shortage situation. However, reaching a competitive RO membrane is a challenging issue. Therefore, this study investigated the optimum polymeric blending ratio between cellulose acetate (CA) and polyvinylidene fluoride (PVDF) to have a new blended polymeric membrane named cellulose acetate polyvinyl (CAPV-X), where X is the PVDF concentration %, with enhanced properties. The optimum prepared CA/PVDF blended membrane was selected for further enhancement with nano sized metal organic framework (UiO-66 MOF). Selection was made depending on each membrane salt rejection. A membrane characterization was performed based on Fourier transform infrared (FTIR), X-ray diffractometer (XRD), scanning electron microscope, thermal gravimetric analysis, and contact angle. FTIR and XRD data confirmed the successful preparation of the blended polymeric membranes CAPV-5, CAPV-7 and CAPV-10. Further, they proved UiO-66 nanofiller impregnation in the hybrid CA/PVDF/UiO-66 membrane (CPU). The addition of PVDF and nano-MOF had a slight positive effect on the membrane thermal stability. The contact angle increased with increasing the PVDF concentration and decreased once more with the impregnation of UiO-66. The RO membrane performance revealed that the optimum CA/PVDF ratio was found to be 93/7% with around 80% salt rejection and a permeate water flux of 4 L/m 2  h. CPU composite membrane was then fabricated to enhance salt rejection and permeate water flux. The testing data indicated that salt rejection and permeate water flux increased over blended CAPV-7 membrane by almost 12% and 42%, respectively. Overall, CPU hybrid membrane could be used for water desalination with a good salt rejection of 90.2% and a permeate water flux of 5.7 L/m 2  h. Graphical abstract
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-022-04889-9