Graph with respect to superfluous elements in a lattice

We consider superfluous elements in a bounded lattice with 0 and 1, and introduce various types of graphs associated with these elements. The notions such as superfluous element graph (S(L)), join intersection graph (JI(L)) in a lattice, and in a distributive lattice, superfluous intersection graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2022, Vol.23 (2), p.929-945
Hauptverfasser: Sahoo, Tapatee, Panackal, Harikrishnan, Srinivas, Kedukodi Babushri, Kuncham, Syam Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider superfluous elements in a bounded lattice with 0 and 1, and introduce various types of graphs associated with these elements. The notions such as superfluous element graph (S(L)), join intersection graph (JI(L)) in a lattice, and in a distributive lattice, superfluous intersection graph (SI(L)) are defined. Dual atoms play an important role to find connections between the lattice-theoretic properties and those of corresponding graph-theoretic properties. Consequently, we derive some important equivalent conditions of graphs involving the cardinality of dual atoms in a lattice. We provide necessary illustrations and investigate properties such as diameter, girth, and cut vertex of these graphs.
ISSN:1787-2405
1787-2413
DOI:10.18514/MMN.2022.3620