Ion-selective electrodes based on laser-induced graphene as an alternative method for nitrite monitoring

Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2023-01, Vol.190 (1), p.43, Article 43
Hauptverfasser: Soares, Raquel R. A., Hjort, Robert G., Pola, Cícero C., Jing, Dapeng, Cecon, Victor S., Claussen, Jonathan C., Gomes, Carmen L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec −1 , a detection limit of 0.3 ± 0.1 mg L -1  (mean ± standard deviation), and a broad linear sensing range from 10 −5 to 10 −1  M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L -1  in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance. Graphical abstract
ISSN:0026-3672
1436-5073
DOI:10.1007/s00604-022-05615-9