A blow-up formula for stationary quaternionic maps
Let \((M, J^\alpha, \alpha =1,2,3)\) and \((N, {\cal J}^\alpha, \alpha =1,2,3)\) be Hyperk\"ahler manifolds. Suppose that \(u_k\) is a sequence of stationary quaternionic maps and converges weakly to \(u\) in \(H^{1,2}(M,N)\), we derive a blow-up formula for \(\lim_{k\to\infty}d(u_k^*{\cal J}^\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \((M, J^\alpha, \alpha =1,2,3)\) and \((N, {\cal J}^\alpha, \alpha =1,2,3)\) be Hyperk\"ahler manifolds. Suppose that \(u_k\) is a sequence of stationary quaternionic maps and converges weakly to \(u\) in \(H^{1,2}(M,N)\), we derive a blow-up formula for \(\lim_{k\to\infty}d(u_k^*{\cal J}^\alpha)\), for \(\alpha=1,2,3\), in the weak sense. As a corollary, we show that the maps constructed by Chen-Li [CL2] and by Foscolo [F] can not be tangent maps (c.f [LT], Theorem 3.1) of a stationary quaternionic map satisfing \(d(u^*{\cal J}^\alpha)=0\). |
---|---|
ISSN: | 2331-8422 |