Simple geometric mitosis
We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson-Miller mitosis (in type...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct simple geometric operations on faces of the Cayley sum of two polytopes. These operations can be thought of as convex geometric counterparts of divided difference operators in Schubert calculus. We show that these operations give a uniform construction of Knutson-Miller mitosis (in type A) and (simplified) Fujita mitosis (in type C) on Kogan faces of Gelfand-Zetlin polytopes. |
---|---|
ISSN: | 2331-8422 |