Characterizing the spatial potential of a surface electrode ion trap

The accurate characterization of the spatial potential generated by a planar electrode in a surface-type Paul trap is of great interest. To achieve this, we employ a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Based on this, an opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Qin, Qingqing, Chen, Ting, Zhang, Xinfang, Ou, Baoquan, Zhang, Jie, Wu, Chunwang, Xie, Yi, Wu, Wei, Chen, Pingxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accurate characterization of the spatial potential generated by a planar electrode in a surface-type Paul trap is of great interest. To achieve this, we employ a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Based on this, an optimization method is introduced to precisely characterize the axial electric field intensity created by the powered electrode and the stray field. In contrast to existing methods, various types of experimental data, such as the equilibrium position of ions in a linear string, equilibrium positions of single trapped ions and trap frequencies, are utilized for potential estimation in order to mitigate systematic errors. This approach offers significant flexibility in voltage settings for data collection, making it particularly well-suited for surface electrode traps where ion probe trapping height may vary with casual voltage settings. In our demonstration, we successfully minimized the discrepancy between experimental observations and model predictions to an impressive extent. The relative errors of secular frequencies were suppressed within \(\pm\) 0.5\(\%\), and the positional error of ions was limited to less than 1.2 \(\mu\)m, all surpassing those achieved by existing methodologies.
ISSN:2331-8422