Unconditional uniqueness and non-uniqueness for Hardy-Hénon parabolic equations

We study the problems of uniqueness for Hardy-Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy-Hénon type nonlinearities, we employ weighted Lorentz spaces as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Chikami, Noboru, Ikeda, Masahiro, Taniguchi, Koichi, Tayachi, Slim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the problems of uniqueness for Hardy-Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy-Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy-Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces.
ISSN:2331-8422