Unconditional uniqueness and non-uniqueness for Hardy-Hénon parabolic equations
We study the problems of uniqueness for Hardy-Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy-Hénon type nonlinearities, we employ weighted Lorentz spaces as...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the problems of uniqueness for Hardy-Hénon parabolic equations, which are semilinear heat equations with the singular potential (Hardy type) or the increasing potential (Hénon type) in the nonlinear term. To deal with the Hardy-Hénon type nonlinearities, we employ weighted Lorentz spaces as solution spaces. We prove unconditional uniqueness and non-uniqueness, and we establish uniqueness criterion for Hardy-Hénon parabolic equations in the weighted Lorentz spaces. The results extend the previous works on the Fujita equation and Hardy equations in Lebesgue spaces. |
---|---|
ISSN: | 2331-8422 |