Discrepant chemical differentiation and magmatic-hydrothermal evolution of high-silica magmatism associated with Pb–Zn and W mineralization in the Lhasa terrane
[Display omitted] •The Bangbule deposit is the first late Cretaceous Pb-Zn deposit discovered in the Lhasa Terrane.•A comparative study of HSGs associated with Pb-Zn and W mineralization in the LT.•Differentiation and the evolution of magmatic-hydrothermal system generated spatial differences in min...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2022-09, Vol.13 (5), p.101411, Article 101411 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•The Bangbule deposit is the first late Cretaceous Pb-Zn deposit discovered in the Lhasa Terrane.•A comparative study of HSGs associated with Pb-Zn and W mineralization in the LT.•Differentiation and the evolution of magmatic-hydrothermal system generated spatial differences in mineralization.
High-silica (SiO2 > 70 wt.%) granites (HSGs) are the main source of W, Sn, and rare metals. However, abundant HSGs, temporally, spatially, and genetically associated with Pb–Zn mineralization, in the Lhasa terrane (LT), provided an ideal opportunity to study the key factors responsible for Pb–Zn enrichment, instead of W–Sn enrichment. Here we contribute to this topic through U-Pb dating of zircon and garnet, and whole-rock and Sr–Nd–Hf isotopic geochemistry of ore-related quartz porphyries in the Bangbule deposit and compared these results with published data from large and giant Pb–Zn and W deposits in the LT. The magmatism-alteration-mineralization event in the Bangbule deposit was recorded by robust zircon U–Pb ages of 77.3 ± 0.9 Ma and hydrothermal garnet U–Pb ages of 75.7 ± 4.8 Ma, which is 10–15 Ma earlier than the main Paleocene metallogenic event and the first record of late Cretaceous Pb–Zn polymetallic mineralization in the LT. The late Cretaceous-Paleocene magmatism and mineralization events are a response to the subduction of Neotethyan oceanic lithosphere, which occurred as a result of the collision of the Indian and Asian plates. These HSGs related to Pb–Zn mineralization, with high total-alkalis and low magnesian contents, are enriched in Ba, Th, and Rb, but depleted in Ti, Eu, Sr, and P. They belong to either the S-type, or I-type granites. The Sr–Nd–Hf isotopic compositions of the Pb–Zn mineralized granites demonstrate that they were generated by the partial melting of Proterozoic basement with or without mantle-derived melt input. This was consistent with the postulated source of W enrichment in the LT. The Pb–Zn and W related granites have similar zircon-Ti-saturation temperatures, comparable low whole-rock Fe2O3/FeO ratios, and zircon oxygen fugacity. This indicated that the Pb–Zn–W enrichment in the high-silica magma system could be attributed to a relatively reduced magma. The Pb–Zn related HSGs, abundant quartz and feldspar phenocrysts, and weak fractionation of twin-elements in whole-rock analysis, can be used to reconstruct a model of the magma reservoir. We postulate that these features could be reproduced by silica-rich cr |
---|---|
ISSN: | 1674-9871 2588-9192 |
DOI: | 10.1016/j.gsf.2022.101411 |