Electrochemical Reduction of Halogenated Alkanes and Alkenes Using Activated Carbon-Based Cathodes

Granular activated carbon (GAC) is used to sorb a broad range of halogenated contaminant classes, but spent GAC disposal is costly. Taking advantage of GAC’s conductivity, this study evaluated the conversion of the GAC to cathodes for electrochemical reductive dehalogenation of 15 halogenated alkane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2022-12, Vol.56 (24), p.17965-17976
Hauptverfasser: King, Jacob F., Mitch, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Granular activated carbon (GAC) is used to sorb a broad range of halogenated contaminant classes, but spent GAC disposal is costly. Taking advantage of GAC’s conductivity, this study evaluated the conversion of the GAC to cathodes for electrochemical reductive dehalogenation of 15 halogenated alkanes and alkenes exhibiting a diversity of structures (type of halogen, number of halogens, functional groups) and including contaminants of practical importance (e.g., trichloroethylene). Alkane degradation rates increased with the number of halogens and in the order: chlorine < bromine < iodine. Quantitative structure–activity relationships (QSARs) correlating experimental first-order degradation rate constants for alkanes with molecular descriptors associated with an outer-sphere one-electron transfer calculated using density functional theory indicated that correlations with molecular descriptors improved in the order: aqueous phase reduction potentials (E 0,aq) < energy of the substrate’s lowest unoccupied molecular orbital (E LUMO) < Marcus theory activation free energies (ΔG ‡) ∼ gas-phase standard reduction free energies (ΔG 0,gas). Chlorinated alkene degradation rates increased with decreasing number of chlorines, and QSAR correlations were opposite those of alkanes, indicating a different reaction mechanism. Degradation timescales ranged from 1 min to 3 h with halides as predominant products. These results suggest that the electrochemical reduction of halogenated alkanes and alkenes can be used to regenerate spent GAC.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c05608