On the Question of the Bäcklund Transformations and Jordan Generalizations of the Second Painlevé Equation

We demonstrate the way to derive the second Painlevé equation \(P_2\) and its B\"acklund transformations from the deformations of the Nonlinear Schr\"odinger equation (NLS), all the while preserving the strict invariance with respect to the Schlesinger transformations. The proposed algorit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Yurov, Artyom, Yurov, Valerian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the way to derive the second Painlevé equation \(P_2\) and its B\"acklund transformations from the deformations of the Nonlinear Schr\"odinger equation (NLS), all the while preserving the strict invariance with respect to the Schlesinger transformations. The proposed algorithm allows for a construction of Jordan algebra-based completely integrable multiple-field generalizations of \(P_2\) while also producing the corresponding B\"acklund transformations. We suggest calling such models the JP-systems. For example, a Jordan algebra \(J_{_{{\rm Mat}(N,N)}}\) with the Jordan product in the form of a semi-anticommutator is shown to generate an integrable matrix generalization of \(P_2\), whereas the \(V_{_N}\) algebra produces a different JP-system that serves as a generalization of the Sokolov's form of a vectorial NLS.
ISSN:2331-8422
DOI:10.48550/arxiv.2212.14434