3‐[3‐(Phenalkylamino)cyclohexyl]phenols: Synthesis, biological activity, and in silico investigation of a naltrexone‐derived novel class of MOR‐antagonists
The development of novel μ‐opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3‐[3‐(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist act...
Gespeichert in:
Veröffentlicht in: | Archiv der Pharmazie (Weinheim) 2023-01, Vol.356 (1), p.e2200432-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of novel μ‐opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3‐[3‐(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO‐induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra‐Precision Glide and Generalized‐Born Surface Area experiments provided useful information on the nature of the ligand–receptor interactions, indicating a peculiar combination of C‐1 stereochemistry and N‐substitutions as feasibly essential for MOR–ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR–ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3‐cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.
Based on a simplified version of the morphinan scaffold, 3‐[3‐(phenalkylamino)cyclohexyl]phenol analogues were designed, synthesized and evaluated for their µ‐opioid receptor (MOR) antagonist activity in vitro and in silico. Docking studies indicate a peculiar combination of C‐1 stereochemistry and N‐substitutions as feasibly essential for MOR‐ligand complex stability. |
---|---|
ISSN: | 0365-6233 1521-4184 |
DOI: | 10.1002/ardp.202200432 |