Metallurgical solid waste modified thermoplastic polyurethane composites: The thermal stability and combustion properties

As a kind of bulk industrial solid waste, the massive accumulation of iron tailings has caused serious waste of resources and environmental pollution. In this study, a silane coupling agent (KH550) was used to modify the surface of iron tailings to produce MIT, and it was compounded with ammonium po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2023-02, Vol.140 (6), p.n/a
Hauptverfasser: Yang, Sujie, Liu, Xinliang, Tao, Yi, Deng, Dan, Kan, Yongchun, Du, Xiaoyan, Liu, Xiuyu, Tang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a kind of bulk industrial solid waste, the massive accumulation of iron tailings has caused serious waste of resources and environmental pollution. In this study, a silane coupling agent (KH550) was used to modify the surface of iron tailings to produce MIT, and it was compounded with ammonium polyphosphate (APP) on thermoplastic polyurethane (TPU) to prepare a series of TPU/APP/MIT composites. Thermogravimetric (TG), cone calorimetric (CCT), thermogravimetric infrared, scanning electron microscopy, and Raman techniques were also used to analyze the combustion performance, smoke toxicity, and microscopic morphology. The TG test results showed that the compounding of APP and MIT significantly improved the residual carbon value of TPU composites at 700°C. CCT test results showed that the TPU/APP/MIT composites exhibited excellent flame retardancy and smoke suppression. Compared with pure TPU, PHRR, THR, and TSR of TPU/APP15/MIT10 composite decreased by 85.56%, 87.83%, and 86.17%, respectively, the peak release rates of CO and CO2 decreased by 69.26% and 90.34%, respectively. The above studies showed that APP and MIT have excellent flame retardant and smoke suppression effect on TPU materials, providing more opportunities for the study of TPU composites and metallurgical solid waste utilization.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.53434