Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning

By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-12, Vol.2022, p.1-15
Hauptverfasser: Wang, Yali, Chen, Jiachao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title Wireless communications and mobile computing
container_volume 2022
creator Wang, Yali
Chen, Jiachao
description By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.
doi_str_mv 10.1155/2022/7212984
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759870407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759870407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKc3_4CAR61L0qZpj1I3FQqC6NXykr7Mji2taTfxvzdlY0dP79fHe4-PkGvO7jmXciaYEDMluMiz5IRMuIxZlKVKnR7zND8nF32_YozFTPAJ-Sza9Rp062FodkgLMF-NW9LG0Xm9DHW76bbD2Nk1QBdYYwCxpiWCd2MbXE0fETv6ho2zrTe4QTcc55fkzMK6x6tDnJKPxfy9eI7K16eX4qGMjMiTIRKJwDi3OoutBJVA-NaA1hCnKWdGpZqlSmapFcqgAqEZMKMlt1wCco1xPCU3-72db7-32A_Vqt16F05WQsk8UyxhKlB3e8r4tu892qrzzQb8b8VZNRqsRoPVwWDAb_d4UFLDT_M__Qdnbm_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759870407</pqid></control><display><type>article</type><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Wang, Yali ; Chen, Jiachao</creator><contributor>Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</contributor><creatorcontrib>Wang, Yali ; Chen, Jiachao ; Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</creatorcontrib><description>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/7212984</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Caching ; Collaboration ; Computer networks ; Deep learning ; Edge computing ; Federated learning ; Internet of Things ; Linear programming ; Machine learning ; Markov processes ; Neural networks ; Performance prediction ; Popularity ; Preferences ; Privacy ; Servers ; Time series</subject><ispartof>Wireless communications and mobile computing, 2022-12, Vol.2022, p.1-15</ispartof><rights>Copyright © 2022 Yali Wang and Jiachao Chen.</rights><rights>Copyright © 2022 Yali Wang and Jiachao Chen. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</cites><orcidid>0000-0002-1739-3053 ; 0000-0002-7529-1063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><contributor>Rajput, Dharmendra Singh</contributor><contributor>Dharmendra Singh Rajput</contributor><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Chen, Jiachao</creatorcontrib><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><title>Wireless communications and mobile computing</title><description>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Collaboration</subject><subject>Computer networks</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Popularity</subject><subject>Preferences</subject><subject>Privacy</subject><subject>Servers</subject><subject>Time series</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUgIMoOKc3_4CAR61L0qZpj1I3FQqC6NXykr7Mji2taTfxvzdlY0dP79fHe4-PkGvO7jmXciaYEDMluMiz5IRMuIxZlKVKnR7zND8nF32_YozFTPAJ-Sza9Rp062FodkgLMF-NW9LG0Xm9DHW76bbD2Nk1QBdYYwCxpiWCd2MbXE0fETv6ho2zrTe4QTcc55fkzMK6x6tDnJKPxfy9eI7K16eX4qGMjMiTIRKJwDi3OoutBJVA-NaA1hCnKWdGpZqlSmapFcqgAqEZMKMlt1wCco1xPCU3-72db7-32A_Vqt16F05WQsk8UyxhKlB3e8r4tu892qrzzQb8b8VZNRqsRoPVwWDAb_d4UFLDT_M__Qdnbm_Z</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Wang, Yali</creator><creator>Chen, Jiachao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1739-3053</orcidid><orcidid>https://orcid.org/0000-0002-7529-1063</orcidid></search><sort><creationdate>20221222</creationdate><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><author>Wang, Yali ; Chen, Jiachao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Collaboration</topic><topic>Computer networks</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Popularity</topic><topic>Preferences</topic><topic>Privacy</topic><topic>Servers</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Chen, Jiachao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yali</au><au>Chen, Jiachao</au><au>Rajput, Dharmendra Singh</au><au>Dharmendra Singh Rajput</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-12-22</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/7212984</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1739-3053</orcidid><orcidid>https://orcid.org/0000-0002-7529-1063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-8669
ispartof Wireless communications and mobile computing, 2022-12, Vol.2022, p.1-15
issn 1530-8669
1530-8677
language eng
recordid cdi_proquest_journals_2759870407
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Algorithms
Caching
Collaboration
Computer networks
Deep learning
Edge computing
Federated learning
Internet of Things
Linear programming
Machine learning
Markov processes
Neural networks
Performance prediction
Popularity
Preferences
Privacy
Servers
Time series
title Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Caching%20in%20Edge%20Computing%20via%20Federated%20Learning%20and%20Deep%20Reinforcement%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Wang,%20Yali&rft.date=2022-12-22&rft.volume=2022&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/7212984&rft_dat=%3Cproquest_cross%3E2759870407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759870407&rft_id=info:pmid/&rfr_iscdi=true