Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reas...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2022-12, Vol.2022, p.1-15 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Wireless communications and mobile computing |
container_volume | 2022 |
creator | Wang, Yali Chen, Jiachao |
description | By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay. |
doi_str_mv | 10.1155/2022/7212984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2759870407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759870407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKc3_4CAR61L0qZpj1I3FQqC6NXykr7Mji2taTfxvzdlY0dP79fHe4-PkGvO7jmXciaYEDMluMiz5IRMuIxZlKVKnR7zND8nF32_YozFTPAJ-Sza9Rp062FodkgLMF-NW9LG0Xm9DHW76bbD2Nk1QBdYYwCxpiWCd2MbXE0fETv6ho2zrTe4QTcc55fkzMK6x6tDnJKPxfy9eI7K16eX4qGMjMiTIRKJwDi3OoutBJVA-NaA1hCnKWdGpZqlSmapFcqgAqEZMKMlt1wCco1xPCU3-72db7-32A_Vqt16F05WQsk8UyxhKlB3e8r4tu892qrzzQb8b8VZNRqsRoPVwWDAb_d4UFLDT_M__Qdnbm_Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759870407</pqid></control><display><type>article</type><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Wang, Yali ; Chen, Jiachao</creator><contributor>Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</contributor><creatorcontrib>Wang, Yali ; Chen, Jiachao ; Rajput, Dharmendra Singh ; Dharmendra Singh Rajput</creatorcontrib><description>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</description><identifier>ISSN: 1530-8669</identifier><identifier>EISSN: 1530-8677</identifier><identifier>DOI: 10.1155/2022/7212984</identifier><language>eng</language><publisher>Oxford: Hindawi</publisher><subject>Algorithms ; Caching ; Collaboration ; Computer networks ; Deep learning ; Edge computing ; Federated learning ; Internet of Things ; Linear programming ; Machine learning ; Markov processes ; Neural networks ; Performance prediction ; Popularity ; Preferences ; Privacy ; Servers ; Time series</subject><ispartof>Wireless communications and mobile computing, 2022-12, Vol.2022, p.1-15</ispartof><rights>Copyright © 2022 Yali Wang and Jiachao Chen.</rights><rights>Copyright © 2022 Yali Wang and Jiachao Chen. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</cites><orcidid>0000-0002-1739-3053 ; 0000-0002-7529-1063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><contributor>Rajput, Dharmendra Singh</contributor><contributor>Dharmendra Singh Rajput</contributor><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Chen, Jiachao</creatorcontrib><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><title>Wireless communications and mobile computing</title><description>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Collaboration</subject><subject>Computer networks</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Federated learning</subject><subject>Internet of Things</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Popularity</subject><subject>Preferences</subject><subject>Privacy</subject><subject>Servers</subject><subject>Time series</subject><issn>1530-8669</issn><issn>1530-8677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9LwzAUgIMoOKc3_4CAR61L0qZpj1I3FQqC6NXykr7Mji2taTfxvzdlY0dP79fHe4-PkGvO7jmXciaYEDMluMiz5IRMuIxZlKVKnR7zND8nF32_YozFTPAJ-Sza9Rp062FodkgLMF-NW9LG0Xm9DHW76bbD2Nk1QBdYYwCxpiWCd2MbXE0fETv6ho2zrTe4QTcc55fkzMK6x6tDnJKPxfy9eI7K16eX4qGMjMiTIRKJwDi3OoutBJVA-NaA1hCnKWdGpZqlSmapFcqgAqEZMKMlt1wCco1xPCU3-72db7-32A_Vqt16F05WQsk8UyxhKlB3e8r4tu892qrzzQb8b8VZNRqsRoPVwWDAb_d4UFLDT_M__Qdnbm_Z</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Wang, Yali</creator><creator>Chen, Jiachao</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1739-3053</orcidid><orcidid>https://orcid.org/0000-0002-7529-1063</orcidid></search><sort><creationdate>20221222</creationdate><title>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</title><author>Wang, Yali ; Chen, Jiachao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-242e39fb83f5a74a153cabba36610c76b067586f27ce7a2b0a0cb51f15ae1be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Collaboration</topic><topic>Computer networks</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Federated learning</topic><topic>Internet of Things</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Popularity</topic><topic>Preferences</topic><topic>Privacy</topic><topic>Servers</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yali</creatorcontrib><creatorcontrib>Chen, Jiachao</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Wireless communications and mobile computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yali</au><au>Chen, Jiachao</au><au>Rajput, Dharmendra Singh</au><au>Dharmendra Singh Rajput</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning</atitle><jtitle>Wireless communications and mobile computing</jtitle><date>2022-12-22</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1530-8669</issn><eissn>1530-8677</eissn><abstract>By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.</abstract><cop>Oxford</cop><pub>Hindawi</pub><doi>10.1155/2022/7212984</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1739-3053</orcidid><orcidid>https://orcid.org/0000-0002-7529-1063</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-8669 |
ispartof | Wireless communications and mobile computing, 2022-12, Vol.2022, p.1-15 |
issn | 1530-8669 1530-8677 |
language | eng |
recordid | cdi_proquest_journals_2759870407 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Caching Collaboration Computer networks Deep learning Edge computing Federated learning Internet of Things Linear programming Machine learning Markov processes Neural networks Performance prediction Popularity Preferences Privacy Servers Time series |
title | Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Caching%20in%20Edge%20Computing%20via%20Federated%20Learning%20and%20Deep%20Reinforcement%20Learning&rft.jtitle=Wireless%20communications%20and%20mobile%20computing&rft.au=Wang,%20Yali&rft.date=2022-12-22&rft.volume=2022&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1530-8669&rft.eissn=1530-8677&rft_id=info:doi/10.1155/2022/7212984&rft_dat=%3Cproquest_cross%3E2759870407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759870407&rft_id=info:pmid/&rfr_iscdi=true |