Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning

By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless communications and mobile computing 2022-12, Vol.2022, p.1-15
Hauptverfasser: Wang, Yali, Chen, Jiachao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By deploying resources in the vicinity of users, edge caching can substantially reduce the latency for users to retrieve content and relieve the pressure on the backbone network. Due to the capacity limitation of caching and the dynamic nature of user requests, how to allocate caching resources reasonably must be considered. Some edge caching studies improve network performance by predicting content popularity and actively caching the most popular content, thereby ignoring the privacy and security issues caused by the need to collect user information at the central unit. To this end, a collaborative caching strategy based on federated learning is proposed. First, federated learning is used to make distributed predictions of the preferences of users in the nodes to develop an effective content caching policy. Then, the problem of allocating caching resources to optimize the cost of video providers is formulated as a Markov decision process, and a reinforcement learning method is used to optimize the caching decisions. Compared with several basic caching strategies in terms of cache hit rate, transmission delay, and cost, the simulation results show that the proposed content caching strategy reduces the cost of video providers, and has higher cache hit rate and lower average transmission delay.
ISSN:1530-8669
1530-8677
DOI:10.1155/2022/7212984