The Involution Kernel and the Dual Potential for Functions in the Walters’ Family
First, we set a suitable notation. Points in { 0 , 1 } Z - { 0 } = { 0 , 1 } N × { 0 , 1 } N = Ω - × Ω + , are denoted by ( y | x ) = ( . . . , y 2 , y 1 | x 1 , x 2 , . . . ) , where ( x 1 , x 2 , . . . ) ∈ { 0 , 1 } N , and ( y 1 , y 2 , . . . ) ∈ { 0 , 1 } N . The bijective map σ ^ ( . . . , y 2...
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2023-03, Vol.22 (1), Article 26 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | First, we set a suitable notation. Points in
{
0
,
1
}
Z
-
{
0
}
=
{
0
,
1
}
N
×
{
0
,
1
}
N
=
Ω
-
×
Ω
+
, are denoted by
(
y
|
x
)
=
(
.
.
.
,
y
2
,
y
1
|
x
1
,
x
2
,
.
.
.
)
, where
(
x
1
,
x
2
,
.
.
.
)
∈
{
0
,
1
}
N
, and
(
y
1
,
y
2
,
.
.
.
)
∈
{
0
,
1
}
N
. The bijective map
σ
^
(
.
.
.
,
y
2
,
y
1
|
x
1
,
x
2
,
.
.
.
)
=
(
.
.
.
,
y
2
,
y
1
,
x
1
|
x
2
,
.
.
.
)
is called the bilateral shift and acts on
{
0
,
1
}
Z
-
{
0
}
. Given
A
:
{
0
,
1
}
N
=
Ω
+
→
R
we express
A
in the variable
x
, like
A
(
x
). In a similar way, given
B
:
{
0
,
1
}
N
=
Ω
-
→
R
we express
B
in the variable
y
, like
B
(
y
). Finally, given
W
:
Ω
-
×
Ω
+
→
R
, we express
W
in the variable (
y
|
x
), like
W
(
y
|
x
). By abuse of notation, we write
A
(
y
|
x
)
=
A
(
x
)
and
B
(
y
|
x
)
=
B
(
y
)
.
The probability
μ
A
denotes the equilibrium probability for
A
:
{
0
,
1
}
N
→
R
. Given a continuous potential
A
:
Ω
+
→
R
, we say that the continuous potential
A
∗
:
Ω
-
→
R
is the dual potential of
A
, if there exists a continuous
W
:
Ω
-
×
Ω
+
→
R
, such that, for all
(
y
|
x
)
∈
{
0
,
1
}
Z
-
{
0
}
A
∗
(
y
)
=
A
∘
σ
^
-
1
+
W
∘
σ
^
-
1
-
W
(
y
|
x
)
.
We say that
W
is an involution kernel for
A
. It is known that the function
W
allows to define a spectral projection in the linear space of the main eigenfunction of the Ruelle operator for
A
. Given
A
, we describe explicit expressions for
W
and the dual potential
A
∗
, for
A
in a family of functions introduced by P. Walters. Denote by
θ
:
Ω
-
×
Ω
+
→
Ω
-
×
Ω
+
the function
θ
(
.
.
.
,
y
2
,
y
1
|
x
1
,
x
2
,
.
.
.
)
=
(
.
.
.
,
x
2
,
x
1
|
y
1
,
y
2
,
.
.
.
)
.
We say that
A
is symmetric if
A
∗
(
θ
(
x
|
y
)
)
=
A
(
y
|
x
)
=
A
(
x
)
.
We present conditions for
A
to be symmetric and to be of twist type. It is known that if
A
is symmetric then
μ
A
has zero entropy production. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-022-00732-5 |