Special noncancellative commutative semigroup operations on the real numbers and distribution

Let R be the space of real numbers with the ordinary topology. Define x ⋆ 1 y = | x y | ( x , y ∈ R ) and x ⋆ 2 y = max { 1 , x } + max { 1 , y } ( x , y ∈ R ) . We show that there is no cancellative continuous semigroup operation which is distributed by ⋆ i ( i = 1 , 2 ) . Conversely we show that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2022-12, Vol.168 (2), p.363-372
Hauptverfasser: Miura, T., Niwa, N., Oka, H., Takahasi, S.-E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be the space of real numbers with the ordinary topology. Define x ⋆ 1 y = | x y | ( x , y ∈ R ) and x ⋆ 2 y = max { 1 , x } + max { 1 , y } ( x , y ∈ R ) . We show that there is no cancellative continuous semigroup operation which is distributed by ⋆ i ( i = 1 , 2 ) . Conversely we show that there is no cancellative continuous semigroup operation which is distributive over ⋆ i ( i = 1 , 2 ) . Moreover we discuss the above arguments for a null semigroup operation on R .
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-022-01285-4