Special noncancellative commutative semigroup operations on the real numbers and distribution
Let R be the space of real numbers with the ordinary topology. Define x ⋆ 1 y = | x y | ( x , y ∈ R ) and x ⋆ 2 y = max { 1 , x } + max { 1 , y } ( x , y ∈ R ) . We show that there is no cancellative continuous semigroup operation which is distributed by ⋆ i ( i = 1 , 2 ) . Conversely we show that t...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2022-12, Vol.168 (2), p.363-372 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be the space of real numbers with the ordinary topology. Define
x
⋆
1
y
=
|
x
y
|
(
x
,
y
∈
R
)
and
x
⋆
2
y
=
max
{
1
,
x
}
+
max
{
1
,
y
}
(
x
,
y
∈
R
)
. We show that there is no cancellative continuous semigroup operation which is distributed by
⋆
i
(
i
=
1
,
2
)
. Conversely we show that there is no cancellative continuous semigroup operation which is distributive over
⋆
i
(
i
=
1
,
2
)
. Moreover we discuss the above arguments for a null semigroup operation on
R
. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-022-01285-4 |