A Fast DVM Algorithm for Wideband Time-Delay Multi-Beam Beamformers
This paper presents a sparse factorization for the delay Vandermonde matrix (DVM) along with fast, exact, radix-2, and recursive algorithms to compute the DVM-vector product for wideband multi-beam antenna arrays. The proposed algorithms enable low-complexity wideband beamformers in emerging millime...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2022-01, Vol.70, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a sparse factorization for the delay Vandermonde matrix (DVM) along with fast, exact, radix-2, and recursive algorithms to compute the DVM-vector product for wideband multi-beam antenna arrays. The proposed algorithms enable low-complexity wideband beamformers in emerging millimeter-wave wireless communication networks by reducing the complexity of N-beam wideband beamforming from \mathcal {O}(N^{2}) to \mathcal {O}(N \mathrm{\: log\:} N), where N=2^{r}(r \geq 1). As a result, the algorithms are faster than the brute-force computation of the DVM-vector product and more efficient than the direct realization of true-time-delay-based multi-beam beamformers. The proposed low-complexity algorithms' signal flow graph (SFG) is also presented to highlight their suitability for hardware implementations. The 2-D frequency responses of DVM-based beamformers are explained through an array signal processing example. Simulation results suggest that integrated circuit (IC) implementations of the SFG significantly reduce chip area and power consumption. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2022.3231182 |