Effective intrinsic ergodicity for countable state Markov shifts
For strongly positively recurrent countable state Markov shifts, we bound the distance between an invariant measure and the measure of maximal entropy in terms of the difference of their entropies. This extends an earlier result for subshifts of finite type, due to Kadyrov. We provide a similar boun...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2022-12, Vol.251 (2), p.679-735 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For strongly positively recurrent countable state Markov shifts, we bound the distance between an invariant measure and the measure of maximal entropy in terms of the difference of their entropies. This extends an earlier result for subshifts of finite type, due to Kadyrov. We provide a similar bound for equilibrium measures of strongly positively recurrent potentials, in terms of the pressure difference. For measures with nearly maximal entropy, we have new, and sharp, bounds. The strong positive recurrence condition is necessary. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/s11856-022-2436-x |