Effective intrinsic ergodicity for countable state Markov shifts

For strongly positively recurrent countable state Markov shifts, we bound the distance between an invariant measure and the measure of maximal entropy in terms of the difference of their entropies. This extends an earlier result for subshifts of finite type, due to Kadyrov. We provide a similar boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2022-12, Vol.251 (2), p.679-735
Hauptverfasser: Rühr, René, Sarig, Omri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For strongly positively recurrent countable state Markov shifts, we bound the distance between an invariant measure and the measure of maximal entropy in terms of the difference of their entropies. This extends an earlier result for subshifts of finite type, due to Kadyrov. We provide a similar bound for equilibrium measures of strongly positively recurrent potentials, in terms of the pressure difference. For measures with nearly maximal entropy, we have new, and sharp, bounds. The strong positive recurrence condition is necessary.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-022-2436-x