Deep Learning for Space Weather Prediction: Bridging the Gap between Heliophysics Data and Theory

Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Dorelli, John C, Bard, Chris, Chen, Thomas Y, Da Silva, Daniel, Luiz Fernando Guides dos Santos, Ireland, Jack, Kirk, Michael, McGranaghan, Ryan, Ayris Narock, Nieves-Chinchilla, Teresa, Samara, Marilia, Sarantos, Menelaos, Schuck, Pete, Thompson, Barbara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
ISSN:2331-8422