Increasing the second uniform indiscernible by strongly ssp forcing
We introduce a new and natural stationary set preserving forcing \(\mathbb P^{c-c}({\lambda},{\mu})\) that (under \(\mathsf{NS}_{\omega_1}\) precipitous + existence of \(H_{\theta}^#\) for a sufficiently large regular \({\theta}\)) increases the second uniform indiscernible \(\mathbf{u}_2\) beyond s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new and natural stationary set preserving forcing \(\mathbb P^{c-c}({\lambda},{\mu})\) that (under \(\mathsf{NS}_{\omega_1}\) precipitous + existence of \(H_{\theta}^#\) for a sufficiently large regular \({\theta}\)) increases the second uniform indiscernible \(\mathbf{u}_2\) beyond some given ordinal \({\lambda}\). The forcing \(\mathbb P^{c-c}\) shares this property with forcings defined in [2] and [9]. As a main tool we use certain natural open two player games which are of independent interest, viz. the capturing games \(\mathbf{G}_M^{cap}(X)\) and the catching-capturing games \(\mathbf{G}_M^{c-c}(X)\). In particular, these games are used to isolate a special family of countable elementary submodels \(M \prec H_{\theta}\) that occur as side conditions in \(\mathbb P^{c-c}\) and thus allow to control the forcing in a strong way. |
---|---|
ISSN: | 2331-8422 |