Artificial optoelectronic synapse based on epitaxial Ba0.6Sr0.4TiO3 thin films memristor for neuromorphic computing and image recognition
Electronic synaptic devices with photoelectric sensing function are becoming increasingly important in the development of neuromorphic computing system. Here, we present a photoelectrical synaptic system based on high-quality epitaxial Ba0.6Sr0.4TiO3 (BST) films in which the resistance ramp characte...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-12, Vol.121 (26) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electronic synaptic devices with photoelectric sensing function are becoming increasingly important in the development of neuromorphic computing system. Here, we present a photoelectrical synaptic system based on high-quality epitaxial Ba0.6Sr0.4TiO3 (BST) films in which the resistance ramp characteristic of the device provides the possibility to simulate synaptic behavior. The memristor with the Pt/BST/Nb:SrTiO3 structure exhibits reliable I–V characteristics and adjustable resistance modulation characteristics. The device can faithfully demonstrate synaptic functions, such as potentiation and depression, spike time-dependent plasticity, and paired pulse facilitation, and the recognition accuracy of handwritten digits was as high as 92.2%. Interestingly, the functions of visual perception, visual memory, and color recognition of the human eyes have also been realized based on the device. This work will provide a strong candidate for the neuromorphic computing hardware system of photoelectric synaptic devices. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0124217 |