On the Optimality and Convergence Properties of the Iterative Learning Model Predictive Controller

In this technical article, we analyze the performance improvement and optimality properties of the learning model predictive control (LMPC) strategy for linear deterministic systems. The LMPC framework is a policy iteration scheme where closed-loop trajectories are used to update the control policy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2023-01, Vol.68 (1), p.556-563
Hauptverfasser: Rosolia, Ugo, Lian, Yingzhao, Maddalena, Emilio T., Ferrari-Trecate, Giancarlo, Jones, Colin N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this technical article, we analyze the performance improvement and optimality properties of the learning model predictive control (LMPC) strategy for linear deterministic systems. The LMPC framework is a policy iteration scheme where closed-loop trajectories are used to update the control policy for the next execution of the control task. We show that, when a linear independence constraint qualification (LICQ) condition holds, the LMPC scheme guarantees strict iterative performance improvement and optimality, meaning that the closed-loop cost evaluated over the entire task converges asymptotically to the optimal cost of the infinite-horizon control problem. Compared to previous works, this sufficient LICQ condition can be easily checked, it holds for a larger class of systems and it can be used to adaptively select the prediction horizon of the controller, as demonstrated by a numerical example.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3148227