Applications of Zvonkin’s Transform to Stationary Kolmogorov Equations
— In this note we develop a new analytic version of Zvonkin’s transform of the drift coefficient of a stationary Kolmogorov equation and apply this transform to derive the Harnack inequality for nonnegative solutions in the case where the diffusion matrix is not locally Sobolev. We also obtain a gen...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2022-11, Vol.106 (2), p.318-321 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | —
In this note we develop a new analytic version of Zvonkin’s transform of the drift coefficient of a stationary Kolmogorov equation and apply this transform to derive the Harnack inequality for nonnegative solutions in the case where the diffusion matrix is not locally Sobolev. We also obtain a generalization of the known theorem of Hasminskii on existence of a probability solution to the stationary Kolmogorov equation. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562422050064 |