Methods for Estimating Plasma Density in a Large-volume Hollow Anode

The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2022-11, Vol.65 (7), p.1186-1193
Hauptverfasser: Landl, N. V., Korolev, Y. D., Kozyrev, A. V., Lopatin, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1193
container_issue 7
container_start_page 1186
container_title Russian physics journal
container_volume 65
creator Landl, N. V.
Korolev, Y. D.
Kozyrev, A. V.
Lopatin, I. V.
description The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a hollow anode. The model includes the non-uniformity of plasma density distribution in the anode cavity. The estimations of the plasma parameters are made. The model is in a good agreement with the experimental data.
doi_str_mv 10.1007/s11182-022-02749-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2758643148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A734607640</galeid><sourcerecordid>A734607640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-6c3a346cba459dd5a5f038c5bb1d32d22163c2246ec6647a6ee0c92a2b1493b43</originalsourceid><addsrcrecordid>eNp9kE9PwyAchonRxDn9Ap5IPKP8K9Djsk1nMqMHPRNKae3SwYROs28vsybeDCEQ8j4_3jwAXBN8SzCWd4kQoijC9LglLxE_ARNSSIZKStVpvmPBkVJKnoOLlDYYZ0zICVg8ueE91Ak2IcJlGrqtGTrfwpfepK2BC-dTNxxg56GBaxNbhz5Dv986uAp9H77gzIfaXYKzxvTJXf2eU_B2v3ydr9D6-eFxPlsjS1k5IGGZYVzYyvCirOvCFA1myhZVRWpGa0qJYJZSLpwVgksjnMO2pIZWhJes4mwKbsa5uxg-9i4NehP20ecvNZWFEpwRrnLqdky1pne6800YorF51W7b2eBd0-X3mcxVsBQcZ4COgI0hpegavYvZQzxogvVRrx716qxX_-jVxy5shFIO-9bFvy7_UN_Sy3t0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758643148</pqid></control><display><type>article</type><title>Methods for Estimating Plasma Density in a Large-volume Hollow Anode</title><source>SpringerLink Journals - AutoHoldings</source><creator>Landl, N. V. ; Korolev, Y. D. ; Kozyrev, A. V. ; Lopatin, I. V.</creator><creatorcontrib>Landl, N. V. ; Korolev, Y. D. ; Kozyrev, A. V. ; Lopatin, I. V.</creatorcontrib><description>The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a hollow anode. The model includes the non-uniformity of plasma density distribution in the anode cavity. The estimations of the plasma parameters are made. The model is in a good agreement with the experimental data.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-022-02749-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Argon ; Condensed Matter Physics ; Density distribution ; Electron energy ; Glow discharges ; Hadrons ; Heavy Ions ; Hollow cathodes ; Ionization ; Lasers ; Low pressure ; Mathematical and Computational Physics ; Methods ; Nonuniformity ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Plasma density ; Plasma Physics ; Theoretical</subject><ispartof>Russian physics journal, 2022-11, Vol.65 (7), p.1186-1193</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-6c3a346cba459dd5a5f038c5bb1d32d22163c2246ec6647a6ee0c92a2b1493b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-022-02749-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-022-02749-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Landl, N. V.</creatorcontrib><creatorcontrib>Korolev, Y. D.</creatorcontrib><creatorcontrib>Kozyrev, A. V.</creatorcontrib><creatorcontrib>Lopatin, I. V.</creatorcontrib><title>Methods for Estimating Plasma Density in a Large-volume Hollow Anode</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a hollow anode. The model includes the non-uniformity of plasma density distribution in the anode cavity. The estimations of the plasma parameters are made. The model is in a good agreement with the experimental data.</description><subject>Analysis</subject><subject>Argon</subject><subject>Condensed Matter Physics</subject><subject>Density distribution</subject><subject>Electron energy</subject><subject>Glow discharges</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Hollow cathodes</subject><subject>Ionization</subject><subject>Lasers</subject><subject>Low pressure</subject><subject>Mathematical and Computational Physics</subject><subject>Methods</subject><subject>Nonuniformity</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma density</subject><subject>Plasma Physics</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwyAchonRxDn9Ap5IPKP8K9Djsk1nMqMHPRNKae3SwYROs28vsybeDCEQ8j4_3jwAXBN8SzCWd4kQoijC9LglLxE_ARNSSIZKStVpvmPBkVJKnoOLlDYYZ0zICVg8ueE91Ak2IcJlGrqtGTrfwpfepK2BC-dTNxxg56GBaxNbhz5Dv986uAp9H77gzIfaXYKzxvTJXf2eU_B2v3ydr9D6-eFxPlsjS1k5IGGZYVzYyvCirOvCFA1myhZVRWpGa0qJYJZSLpwVgksjnMO2pIZWhJes4mwKbsa5uxg-9i4NehP20ecvNZWFEpwRrnLqdky1pne6800YorF51W7b2eBd0-X3mcxVsBQcZ4COgI0hpegavYvZQzxogvVRrx716qxX_-jVxy5shFIO-9bFvy7_UN_Sy3t0</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Landl, N. V.</creator><creator>Korolev, Y. D.</creator><creator>Kozyrev, A. V.</creator><creator>Lopatin, I. V.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>Methods for Estimating Plasma Density in a Large-volume Hollow Anode</title><author>Landl, N. V. ; Korolev, Y. D. ; Kozyrev, A. V. ; Lopatin, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-6c3a346cba459dd5a5f038c5bb1d32d22163c2246ec6647a6ee0c92a2b1493b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Argon</topic><topic>Condensed Matter Physics</topic><topic>Density distribution</topic><topic>Electron energy</topic><topic>Glow discharges</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Hollow cathodes</topic><topic>Ionization</topic><topic>Lasers</topic><topic>Low pressure</topic><topic>Mathematical and Computational Physics</topic><topic>Methods</topic><topic>Nonuniformity</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma density</topic><topic>Plasma Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Landl, N. V.</creatorcontrib><creatorcontrib>Korolev, Y. D.</creatorcontrib><creatorcontrib>Kozyrev, A. V.</creatorcontrib><creatorcontrib>Lopatin, I. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Landl, N. V.</au><au>Korolev, Y. D.</au><au>Kozyrev, A. V.</au><au>Lopatin, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods for Estimating Plasma Density in a Large-volume Hollow Anode</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>65</volume><issue>7</issue><spage>1186</spage><epage>1193</epage><pages>1186-1193</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The results of investigation of a low-pressure glow discharge with a hollow cathode and a large-volume hollow anode in argon and nitrogen are presented. The data on plasma density and electron temperature are obtained. A model is proposed, which describes the mechanisms of plasma sustainment in a hollow anode. The model includes the non-uniformity of plasma density distribution in the anode cavity. The estimations of the plasma parameters are made. The model is in a good agreement with the experimental data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11182-022-02749-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2022-11, Vol.65 (7), p.1186-1193
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2758643148
source SpringerLink Journals - AutoHoldings
subjects Analysis
Argon
Condensed Matter Physics
Density distribution
Electron energy
Glow discharges
Hadrons
Heavy Ions
Hollow cathodes
Ionization
Lasers
Low pressure
Mathematical and Computational Physics
Methods
Nonuniformity
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Plasma density
Plasma Physics
Theoretical
title Methods for Estimating Plasma Density in a Large-volume Hollow Anode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A12%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20for%20Estimating%20Plasma%20Density%20in%20a%20Large-volume%20Hollow%20Anode&rft.jtitle=Russian%20physics%20journal&rft.au=Landl,%20N.%20V.&rft.date=2022-11-01&rft.volume=65&rft.issue=7&rft.spage=1186&rft.epage=1193&rft.pages=1186-1193&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-022-02749-4&rft_dat=%3Cgale_proqu%3EA734607640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758643148&rft_id=info:pmid/&rft_galeid=A734607640&rfr_iscdi=true