Stability analysis by a nonlinear upper bound on the derivative of Lyapunov function

In this work, we give results for asymptotic stability of nonlinear time varying systems using Lyapunov-like Functions with indefinite derivative. We put a nonlinear upper bound for the derivation of the Lyapunov Function and relate the asymptotic stability conditions with the coefficients of the te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2020-11, Vol.56, p.118-123
1. Verfasser: Şahan, Gökhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we give results for asymptotic stability of nonlinear time varying systems using Lyapunov-like Functions with indefinite derivative. We put a nonlinear upper bound for the derivation of the Lyapunov Function and relate the asymptotic stability conditions with the coefficients of the terms of this bound. We also present a useful expression for a commonly used integral and this connects the stability problem and Lyapunov Method with the convergency of a series generated by coefficients of upper bound. This generalizes many works in the literature. Numerical examples demonstrate the efficiency of the given approach.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2020.02.006