Tuning of extended state observer with neural network-based control performance assessment

The extended state observer (ESO) is an inherent element of robust observer-based control systems that allows one to estimate the impact of disturbance on system dynamics. Proper tuning of ESO parameters is necessary to ensure a good quality of estimated quantities and impacts the overall performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of control 2022-03, Vol.64, p.100609, Article 100609
Hauptverfasser: Kicki, Piotr, Łakomy, Krzysztof, Lee, Ki Myung Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The extended state observer (ESO) is an inherent element of robust observer-based control systems that allows one to estimate the impact of disturbance on system dynamics. Proper tuning of ESO parameters is necessary to ensure a good quality of estimated quantities and impacts the overall performance of the robust control structure. In this paper, we propose a neural network (NN) based tuning procedure that allows the prioritization between selected quality criteria such as the control and observation errors and the specified features of the control signal. The designed NN provides an accurate assessment of the control system performance and returns a set of ESO parameters that delivers a near-optimal solution in terms of the user-defined cost function. The proposed tuning procedure, using an estimated state from the single closed-loop experiment, produces near-optimal ESO gains within seconds.
ISSN:0947-3580
1435-5671
DOI:10.1016/j.ejcon.2021.12.004