Complete gradient expanding Ricci solitons with finite asymptotic scalar curvature ratio
Let ( M n , g , f ) , n ≥ 5 , be a complete gradient expanding Ricci soliton with nonnegative Ricci curvature R c ≥ 0 . In this paper, we show that if the asymptotic scalar curvature ratio of ( M n , g , f ) is finite (i.e., lim sup r → ∞ R r 2 < ∞ ), then the Riemann curvature tensor must have a...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-03, Vol.62 (2), Article 48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
M
n
,
g
,
f
)
,
n
≥
5
, be a complete gradient expanding Ricci soliton with nonnegative Ricci curvature
R
c
≥
0
. In this paper, we show that if the asymptotic scalar curvature ratio of
(
M
n
,
g
,
f
)
is finite (i.e.,
lim sup
r
→
∞
R
r
2
<
∞
), then the Riemann curvature tensor must have at least sub-quadratic decay, namely,
lim sup
r
→
∞
|
R
m
|
r
α
<
∞
for any
0
<
α
<
2
. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-022-02387-1 |